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TRACE THEORY AND SYSTOLIC COMPUTATIONS

Martin Rem
Dept. of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, Netherlands

0. Introduction

We discuss a class of concurrent computations, or special-purpose computing engines,
that may be characterized by
(i) they consist of regular arrangements of simple cells;

(ii) the arrangement consumes streams of input values and produces streams of output
values;

(iii) the cells communicate with a fixed number of neighbor cells only;

(iv) the communication behaviors of the cells are independent of the values communicated.
Such arrangements are often referred to as systolic arrays [5]. Our computations,
however, have a few other characteristics that are usually not found among systolic
arrays:

(v} synchronization of cells is by message passing only;

(vi) each output value is produced as soon as all input values on which it depends have
been consumed.

The formalism we use to discuss these computations is trace theory [4], [7], [8]. Section
11is an introduction to trace theory, in which only those subjects are covered that are needed
to understand the subsequent sections. Section 2, called Data Independence, addresses
the question what it means that communication behaviors are independent of the values
communicated. To express the simplicity of (the communication behaviors of) the cells
we define in Section 3 the concept of conservative processes. The results of Sections 2 and
3 are assembled into a number of theorems that are used in Sections 4, 5, and 6. Each
of these remaining sections discusses an illustrative example of a systolic computation:
polynomial multiplication, cyclic encoding, and palindrome recognition.

1. Processes

This section is a trace-theoretic introduction to processes. A process is an abstraction
of a mechanism, capturing the ways in which the mechanism can interact with its envi-
ronment. A process is characterized by the set of events it can be involved in and by the
possible orders in which these events can occur. Events are represented by symbols. Sets of



symbols are called alphabets and finite-length sequences of symbols are called traces. The
set of all traces with symbols from alphabet A is denoted by A*.

A process is a pair {A, X}, where A is an alphabet and X is a non-empty prefix-closed
set of traces with symbols from A:

XcCcA

X#¢
X = pref (X)

where pref (X) denotes set X extended with all the prefixes of traces in X:
pref(X)={t € A |(Gu:ue A" : tu € X)}

For process T we let aT denote its alphabet and tT its set of traces: T = (aT, tT).
An example of a process is

{{a,b}, {¢,a,ab,aba,abab,...})

(e denotes the empty trace.) We call this process SEM;(a,b). Its trace set consists of all
finite alternations of @ and & that do not start with b:

SEMy(a,b) = ({a,b}, pref ({ab}*))

where, for X a set of traces, X* denotes the set of all finite concatenations of traces in X.

The central operators of trace theory are projection and weaving. They are the formal
counterparts of abstraction and composition respectively. The projection of trace ¢ on
alphabet A, denoted by t™A, is obtained by removing from ¢ all symbols that are not in
A. We may write t"a for " {a}. We extend the definition of projection from traces to
processes as follows:

T TA=@TI'NA{t|(Qu:vetT:u"A=1)})
For example,
SEM,(a,b)"a = ({a}, {a}")
The weave of processes T and U, denoted by T'w U, is defined by
TwU=(a@TualU, {te€(aTual)* |t aT e tT At"aU € tU})
For example,

SEM(a,b) w SEM;(b,a) = {{a,b},{e})
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and
SEM(a,b) w SEM,(a,c) = {{a, b, c}, pref ({abec, acb}*))
Let t € tT. The successor set of t in T, denoted by S(¢,T), is defined by
S(t,T) ={acaT |tactT}
For example,

S(e,SEM(a,b)) = {a}

S(a,SEM,(a,b) w SEM(a,c)) = {b,c}

The successor set of £ congsists of all events the mechanism can be involed in after trace
t has occurred. Projection, however, can cause the mechanism to refuse some, or all, of
the events in the successor set. In the theory of CSP-processes [1],[3] such processes are
called nondeterministic. (I would rather call them ‘ill-behaved’.) For example, let

T = ({a, b, Ty y}a {53 T, rd,Yy, yb}>
Then
T7{a,b} = ({a,d}, {&,a,b})

By projecting on {a,b} symbols z and y have disappeared: they represent internal (non-
observable) events. Although

S(e, T{a,b}) = {a, b}

mechanism T {a, b} may refuse to participate in event a (or b) because internal event y (or
z) has already occurred. These types of refusals do not occur if we project on independent
alphabets. Alphabet 4 C aT is called independent when

(Vt:tetT: St,T)C A= S(t,T)=S8(t"AT A))
Alphabet {a,b} in the example above is not independent:
S(y, T) = {8}
but

S('y_{aa b}: T_{a'a b}) = S(E, T_{as b}) = {a'a b}
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Refusals may also be caused by livelock. For example, let

T = ({a,z}, {a,z}")
Then

T a = ({a}, {a}")

If internal event z occurs every time it can be chosen, event a never occurs: it is refused
forever. Alphabet A C aT is called livelockfree when

M:tetT:(An:n2>0: (Yu:uec A* Atu € tT : £(u) < n)))

where £(u) denotes the length of trace . In the example above alphabets {z} and {a} are
not livelockfree.

Both types of refusals are avoided by projecting on transparent alphabefs only. Al-
phabet A C aT is called transparent when A is independent and aT\ A (the complement
of A within aT) is livelockfree. The importance of transparence is demonstrated by the
following theorem [4].

Theorem 1.0 Let T be a deterministic CSP-process and A C aT. Then CSP-process
T~ A is deterministic if and only if A is transparent.

Consequently, if we project on transparent alphabets only, no refusals can occur and there
is no need to resort to CSP-processes,

2. Data Independence

In this section the events are transmissions of values along channels. Each channel a
has a non-empty set V' (a) of values that can be transmitted along it. The alphabets of our
processes consist of pairs {a,n), where n € V(a). We consider processes such as

To ={{a,b} x 2
,pref ({{a,n}(b,2 % n) | n € Z}*))

where 7 stands for the set of integer numbers. For this process V(a) = V(b) = Z. Process
To may informally be described as one that doubles integer numbers.

Ty =({a,b} x {0,1}
,Pref({<a'a 0}, {a, 1){b, 1)}*))

In this case V(a) = V(b) = {0,1}. This process may be viewed as one that filters out
zeroes and passes on ones, A process that separates zeroes and ones is

T; ={{a,b,c} x {0,1}
s pref ({{e,0)(b,0), {(a,1){e,1)}*)}
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A similar process is

Ts ={({a} x {0,1}) U ({8} x {true,false})
, pref ({{a,0) (b, true}, (a, 1){b, false) }*))

A process that may be viewed as one that arbitrarily permutes two values is

Ty =({a,b,c} x 2
,oref ({{a,m)(a,n){b,m){c,n) |meZAneE}
U{(a,m){a,n){b,n}{c,m) | m € ZAn € Z}}*))

If we are interested only in the channels along which the transmissions take place but
not in the values transmitted, we replace each symbol {a,n) by its channel: «({(a, n}) == a.
Function ~ may, of course, be generalized from symbols to sets of symbols, (sets of) traces,
and processes. For example

’Y(To) _ SEM1 (0., b)
and

W(TI) = ({a,, b}a {a.,ab}*)

Process T is called data independent when
(Vt:tetT: (S(¢,T)) = S(v(1),~(T)))

Set 4(S5(t,T)) consists of all channels along which transmission can take place next. The
condition above expresses that this set is independent of the values transmitted thus far.
Processes T;, T3, and Ty are data independent and the other two are not. For example,

'y(S((a,O), T1)) = v{{{a,0}, (e, 1)}) = {a}

but

S(v({e,0)),7(T)) = S(a,7(T1)) = {a, b}

In data independent processes we can separate the communication behavior and the
computation of the values. (This is sometimes called ‘separating data and control.’) The
communication behavior of process T is process 7(T'). Often the communication behavior
is a rather simple process, but many properties, such as transparence, may already be
concluded from it.

We shall specify communication behaviors by regular expressions. For example, we
specify v(Ty) by the expression (a; a;b;¢)*. Notice that semicolons denote concatenation.
If the regular expression generates language X the process specified is (A, pref (X)), where
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A is the set of all symbols that occur in the regular expression. This is a rather primitive
way of specifying processes, but it suffices for most of the examples in this paper.
Let A € v(aT) and ¢t € tT. By t"A we mean t" (Ua : a € A : {a} x V(a)). This
definition may be generalized from traces to processes. Then
YT~A) =~(T)"A
Data independence is closed under projection on transparent alphabets:
Theorem 2.0 If T is data independent, v(aT) is finite, and A C v(aT) then

A transparent = T~ A data independent

In order to maintain data independence under weaving we have to see to it that when-
ever a communication along some channel a can take place:

a € y(S(t"aTl,T)) n~(8(t"al,U))
there is actually a transmissible value n:

{{a,n) | (t7aT){a,n) € tT}

N{{a,n) | (t-aU){a,n) € tU} # ¢ (29)
This is expressed by the following theorem.
Theorem 2.1 Let T and U be data independent.
Then

(Vt:tet(TwU):~4(S(taT,T)n S(t"al,l)) (2.1)

= ~(S(t"aT,T)) Nn~(S(t"al,l)))
if and only if
T w U data independent and (T w U) = 4(T) w ~(U)
In order to allow a simple check that (2.1) holds, we partition the channels of each
process into inputs, oulputs, and signals. We require

(i) for each signal a set V(a) = {0};
(ii) each input @ (of process T') satisfies

(Vt,n: tetTAaeq(SE,T)) AneV(a)
: {a,n) € 8(t,T))



i.e., T does not restrict the values transmitted along its input channels. In processes Ty
through T3 we can choose a to be an input and all other channels outputs. (We had this
choice in mind in the informal descriptions of these processes.} When weaving we see to
the observance of condition (2.1) by requiring that each symbol is an output of at most
one of the processes in the weave.
We conclude this section with a—somewhat informal-—discussion of a simple example.
Its inclusion is meant to show how the computation of output values may be specified.
The example is a process to compute a cumulative sum. Its communication behavior is
specified by (e ; b}*. Channel a is an input, channel b is an output, and V(a) = V(b) = Z.
For t € tT and 0 < ¢ < £(t"a) we let a(i,t) denote the value of the sth transmission along
channel a in trace ¢:
a(i,t) =n
(Fu:t =ufa,n): £L(ua) =1)
The values to be computed may then be specified by
b{i,t) = (X5 :0< 5 <1:a(i,t))
or, dropping the reference to trace ¢,
b{7) = (5 :0 < j <7 afh))
for + > 0. Consequently,

5(0) = a(0) (2.2)
and, for z > 0,
b+ 1) =b(3) +alt + 1) (2.3)

We now describe how the output values are computed. To obtain a CSP-like [2]
notation we add variables £ and y (and assignments) to the communication behavior
(a; 8)*. Our description of the computation is

y:=0;(a?z;b(y+z);y:=y+x) (2.4)

The symbols of the communication behavior have been changed into commmunication state-
ments: as in CSP, each input is postfixed by a question mark and a variable, and each
output is postfixed by an exclamation point and an expression. The effect of 8 (y + z) is
that (b,y + z) is added to the trace thus far generated, establishing

bL(t7H)) =y+ =z
Statement a? z, similarly, establishes
a(f{t"a)) ==z

Step 0 of the repetition in (2.4) establishes a(0) = z, b(0) = a(0) —as required by
(2.2)—and y = b(0). Consider, for ¢ > 0, step ¢ + 1 of the repetition. We have initially
y = b(¢). Statement a7z establishes a(¢ + 1) = z, statement b!(y + z) establishes b(i +1) =
b(z) + a(¢ + 1)—as required by (2.3)—and y := y + z establishes y = b(¢ + 1).
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3. Conservative Processes

Communication behaviors are often rather simple processes. Checking whether alphabets
are transparent is then not difficult. This is in particular the case if the communication
behavior is a conservative process.

The successor set S{¢,T") consists of all symbols that may follow ¢t. We now introduce
the after set of t in T, which consists of all traces that may follow ¢:

after(t,T) = {u € aT* | tu € tT}

for t € tT. Process T is called conservative when

(Vt,a,b: a#bArtactT AthctT
: tab € tT Atha € tT
A after(tab,T) = after(tba, T))

Conservatism expresses, informally speaking, that different events do not disable each other
and that the order in which enabled events occur is immaterial.
We have

Theorem 3.0 For conservative processes T each A C aT is independent.

Conservatism is closed under projection and weaving, as the next two theorems express.
Theorem 3.1 T conservative = T~ A conservative

Theorem 3.2 T and U conservative = T w U conservative

The following theorem can be of help to demonstrate conservatism for some simple
processes.

Theorem 3.3. Let B and S be regular expressions consisting of symbols separated by
semicolons., Then the process specified by R ; S* is conservative. Moreover, each subset of
tts alphabet that contatns a symbol occurring in S is transparent.

For example, the process specified by
c;d;(a;a;b50¢)

is conservative and every non-empty subset of {a,b, ¢} is transparent.

A process may contain subprocesses. For reasons of simplicity we restrict ourselves in
this paper to processes that have at most one subprocess. We always call the subprocess
p. A subprocess has a type, which is again a process. If the subprocess has type U we let



p.U denote the process obtained from U by changing all symbols a into p.a, read ‘p its a’.
For example, if

U = {{a,b}, {c,a,ab})

then

p.U = {{p.a, p.b}, {&,p.0, p.a p.b})

Let process T with aT = A be specified by a regular expression and let its subprocess
have type U. With S denoting the process specified by the regular expression, we require
aS = AU ap.U. Then, by definition,

T=(SwpU)4A (3.0)
For example, let p be of type SEM,(a,b) and let the regular expression be

b;(a;pa;b;pb) (3.1)
Then T = SEM,(b, a). However, if p were of type SEM,(b,a} we would obtain

T = ({a,b}, {&,b,ba})

The internal symbols in S represent the channels along which communications with p
occur. Each such symbol p.a is an (internal) input or output of S if the corresponding
symbol a is an output or input, respectively, of p. This guarantees condition (2.1) for data
independence of the weave in (3.0) to hold. Since (3.0) also contains a projection, we have
to convince ourselves that A is transparent with respect to S w p.U. For (3.1) this is
guaranteed by Theorems 3.2 and 3.3.

An interesting case occurs when T is recursive, i.e., when it has a subprocess of type
T. Then (3.0) becomes an equation in T':

T=(SwpT) A
By definition process T is the least solution of this equation, where ‘least’ is meant with
respect to the subset order for sets of traces. Phrased differently, process T is the least
fixpoint of function f defined by

f(z) =(Swpx)”A (3.2)

which equals the following least upper bound [4]:

(LUB::i>0: fi((4,{e})))



For example, if S is

(a; p.a; b; pb)* ' (3.3)
or

a;b; (p.a; a; b; p.b)* (3.4)
we have T' = SEM/(a,b). However, if S is

(a; p.a; pbs; b)
we find

T = ({a,8}, {c,a})

Theorem 3.4  For conservative S the least fizpoint of f, as defined in (3.2), ts conser-
vative.

For some processes, for example, those specified by regular expressions conforming to
Theorem 3.3, it is sensible to talk about the duration between (external) events, or, more
precisely, about the number of ordered internal events between successive external events.
Let

T=(SwpU) A
A sequence function
g:a8 XxXN—=N

(N the set of natural numbers) is a function satisfying

(vt,a,b,: tabetSAacaSAbeas
: o(a,£(t"a)) < o(b,£(ta”b)}))

We require that subprocess p has a corresponding sequence function o', i.e., one that
satisfies

(Va,i: acaUAi>0: o(p.a,i)=0c'(a,i))

If o is a sequence function then so is & 4+ m for all natural m.
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The process specified by (3.3} has, for example, the following sequence function:

oa,i) =4=x¢

o(bi) =4%i+2
o{p.a,i)=4%i+1
o(pb,i) =4%7+3

(3.5)

This is an allowed sequence function, since o(p.a,?) = o(e,1) + 1, o(p.b,?) = o(b,7) + 1,
and ¢ + 1 is a sequence function for p.

We say that process T has constant response time when there exists a sequence function
o for T such that

(An:nz1:(Vt,a,b:tabetT AhacaT Abe aT
: 0(b,£(tad)) — o(a,L(t"e)) < n))

The process specified by (3.3) has constant response time: for o as given in (3.5) the
condition above holds for n = 2. The process specified by (3.4) does not have constant
response time. A possible sequence function for that process is

o(a,i) = (i +1)* -
o{b,i) = (i +1)*
o(p.a,i) = (i +2)* —
o(p.b,i) = (s +2)* +

We have now assembled all the theory we need to discuss a number of interesting
examples. These are presented in the next three sections.

4. Polynomial Multiplication

Given is a polynomial ¢ of degree M, M > 0. For 0 < 1 < M we let ¢; denote the
coefficient of z* in ¢:

g=gu*s™M+- -+ @ rz+g

Polynomial ¢ has to be multiplied by a polynomial r of degree N, N > 0, yielding a
polynomial s of degree M + N, given by

SpiN—i = (27 i max(f — M,0) < 7 < min(¢, N) : gagyj—i * TN—;)

for0<:< M+ N.

11



The process that carries out the multiplication is to have input a and output & with
V(a) = V(b) = z. Along input @ the coefficients r; are transmitted in order of decreasing
indices, followed by zeroes:

a(i):{rN...i ifOSiSN

0 ifi> N (4.0)

-Along output b the coefficients of s are to be transmitted, followed by zeroes:

b(i)_{sM+N—I’ lfOS.iSM“‘{"N
o ifit>M+N

The communication behavior is (a; 8)*. In view of (4.0) we have for 0<i< M + N
b(7) = (£7 : max(¢ — M,0) < 7 <min(s, N) : gpryj—i * (7)) (4.1)

We design for 0 < k < M processes MUL;, that have (external) communication
behavior (a ; b)* and, cf. (4.1),

b{z) = (X7 : max(¢ — k,0) < j < min(¢, N) : giys-i * a(f)) (4.2)

if0<i<k+ N,and b(:) =0if ¢ > k+ N. Then MULyy is the process we are interested
in.
Process MUL, is simple: (4.2) yields for k =0

. _faoxa(i) FO<i<N
(i) {o ifi> N

Since a(z) = 0 for ¢ > N, this may be simplified to
b(2) = go * a(i)

for ¢ > 0. The computation of MUL, may be specified by

(a?z ; bl (go* x))"

We now turn to MUL; for 1 < k < M. It has a subprocess of type MUL,_,. Conse-
quently,

p.a(?) = a(7) for: >0 (4.3)
(27 : max(¢ — k + 1,0) < 7 < min(¢, V) (4.4)
p.b(s) = { P Qp-1j-i ¥ a{f)) fO<i<k+ N
0 fi>k+ N (4.5)
By (4.2)
b(0) = gx * a(0) (4.6)

12
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MUL3

Fig. 1. Process MUL,

and for0<:<k+ N
b(: +1) = (X7 : max(¢ — k+1,0) < 7 < min(¢ + 1, N) : gr_145-i * a(7))
Hence, by (4.4),

_ _ [ p.b(s) fN<i<k+N
b(’+1)_{p_b(5)+qk*a(i+1) fo<i<N

Since a(i + 1) = 0 for + > N, this may be simplified to
b+ 1) = p.b(d) + qe * a(i + 1)
for0<i< k+ N. For ¢ > k+ N we have p.b(¢) = 0 and a(¢ + 1) = 0. Consequently,
b(z + 1) = p.b{7) + gi * a(z + 1) (4.7

for i > 0.
Relations (4.3), (4.6), and (4.7) tell us how the output values may be computed. We
choose

(a;p.a;b; pb)* (4.8)

as the communication behavior. Then p.a(s) follows a(7}, as required by (4.3), 5(0) follows
a(0), as required by (4.6), and b(¢ + 1) follows p.b(z) and a(? + 1), as required by (4.7).
According to Theorem 3.3 alphabet {a,b} is transparent. We have already shown that
the process has constant response time and that, with S denoting the process specified by
(4.8),

(S w SEM,(a,b)) {a,b} = SEM(a,b)

Given (4.3), (4.6), and (4.7), it is now simple to specify the computation of the output
values:

y:=0; {a?z; palz; b (y+q*z); pbly)” (4.9)

Process MUL, consists of the process specified by (4.9), which uses value g, and
MUL,_, as a subprocess. Figure 1 shows process MULy,, in which each process that uses
value q; is drawn as a rectangle with g, in it.
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We have designed an array of M +1 cells. Each cell stores one coefficient of polynomial
g. All cells are equal, except for the last one, which has no right neighbor. (We could have
made this one equal by adding a cell at the end that returns value 0 upon every input.)

The coefficients of polynomials r and s are transmitted in order of decreasing indices.
This order is actually immaterial. We could have done the same analysis for the reverse
order, and the only change would have been to replace g, in process MUL; by gar—i: the
order in which the coefficients of ¢ are distributed over the cells is reversed as well.

Our solution is independent of the degree of r. Process MU Lj; will multiply polynomial
q by polynomials of any degree. In order for the complete product to be produced at b,
we have to require of the input only that the coefficients of r are followed by at least M
zeroes. But afterwards we have y = 0 and a new polynomial may be input again! We have
thus designed a systolic computation for repeatedly multiplying a fixed polynomial ¢ by
other polynomials. The only restriction on the input is that the coefficients of different
polynomials are separated by (at least) M zeroes.

5. Cyclic Encoding

A nice application of polynomial multiplication is the encoding of messages, using a
cyclic code. Given is a polynomial ¢ of degree M with M > 1, ¢; € {0,1}, and gy = 1.
Polynomial ¢ is often called the generator polynomial of the cyclic code. Each message
is a sequence ryry_1...ro, Where r; € {0,1} and N > 0. The message may be regarded
as the coefficients of a polynomial r. The encoded message consists of the coefficients of
polynomial

rxzM @t (5.0)

of degree M + N, where t is the remainder polynomial after division of r * z™ by q and &
denotes addition modulo 2. More precisely, polynomial ¢ is defined by

rez¥ =gxdot (5.1)

where d is a polynomial of degree N and ¢ has degree M — 1.
For example, if the generator polynomial is z* + z + 1 (M = 4) and the message is
101110111, i.e., r = 2 + 2%+ 2 + z* + 22 + = + 1, we find for (5.1)

Zl2+$10+$g+$8+$6+$5+$4

(z*+z+ 1) (2®+ 2+ 28+ 2) @ (2® + 2% + 2)

The encoded message is, by (5.0), 1011101111110: the sequence 1110 of M check bits,
corresponding to polynomial z* + z? + z, has been added to the message. A well-known
example is the use of z + 1 as generator polynomial. It results in adding a parity bit.
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On account of (5.1), polynomial (5.0), representing the encoded message, equals g * d.
Our encoder, consequently, has to multiply polynomials ¢ and d, a problem we have already
solved in Section 4. Polynomial d is, of course, not given, but the amazing property—
pointed out to me by F. W. Sijstermans of Philips Research—is that the coefficients of d
may be determined as polynomial r is input.

By (5.1) we conclude

dy =N (5.2)
Notice that for 0 < s < N
(9% d)ares = (r % 2 @ agag = (r+ 2")age; = 1 (5.3)
Let ¢' be a polynomial of degree M — 1 such that
=24 (5.4)
Then, for 0 < 7 < N,

d; = (:L'M * d) g
={by (54)} ((g@ ) * d)ars;
= (g* d)m+; ® (¢ * d)nr+j
= {by (5.3)} r;® (¢ *d)ar+;

We introduce a subcomponent p of type MULys_; that computes ¢' *+ d. The output
of p can be used to determine both d; for 0 < 7 < N and, as will turn out later, b{z) for
N<i<N+M.

Our process has input a and output b. For 0 <i < N

a(t) = rn_i (5.6)
andfor0<:< M+ N

b(7) = (g * d)mn—
The external communication behavior is

(a3 BV 6™
where SV denotes N concatenations of S, for example

(a; 0)* = (a; b;a;b)

15



We suggest to insert the internal communications as follows:
(¢; p.a; b; pbYV™; (p.a; b; pb)™
We have, according to the specification of MULys_,,

~ fdy HO<i<N
p-ali) = {o fN<i<M+N (57)

and

o (q’*d)M+N—s'-—1 1f0$2< M+N 5.8
p'b(')_{o fi=M+N (5:8)

For 0 < 1 < N we have, by (5.3),
b(z) = (g * d)min—i = ry-i = a(t)
For N<i< M+ N we find
b(i + 1) = (¢ * d)agyn-i-1
={by (54)} ((=™ ®¢)* Drmsn-i1

= (IM * d)pen—i-1 @ (¢ * d)myn—i1
={M+N—i—-1<M—1} (¢ *d)arsn_i—z

= {by (58)} p.b(i)

Outputs p.a(¢) may be determined as follows.

p-a(0) = {by (5.7)} dn
= {by (5.2)} rv
= {by (5.6)} a(0)

For 0 < 1 < N we derive

p.a(i +1) = {by (5.7)} dy—i—1
= {by (5-5)} rv—i—1 ® (¢’ * d)arn—i—1
= {by {5.6) and (5.8)} a(z + 1) @ p.b(7)

Furthermore, p.a(¢) =0 for N <i< M + N.
Summarizing, we have

o) = { 200 fO<i<N
T 1pb(i-1) ¥N<i<M+N
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and

a(7) ifi=0
pa(d) =qa(@)®pb(i —1) f1<i<N
0 fFN<i<M+N

The computation of these output values may be specified as follows.

y:=0
i(a?z; pal(z@y) ; blx; pbly)
i (p.al0; By ; pb?7y)M

N+1

Since p.b(M + N) = 0, the last statement reestablishes y = 0. We have, therefore, a
simple way of changing the program into one that repeatedly encodes messages:

y:=0
i({(e?z ; pal(zy) ; blz; pbly)
; (p.al0; By ; pb?y)™

)

N+1

Making the process independent of the message length requires a message-separator
signal. Calling that signal ¢, our solution becomes

y:=0
i((e?z 5 pal(zdy) ; blz; pb?y)”
s ¢ (p.al0; by ; pb?y)M

)+

By adding one cell to MULps_; (or one could say, by changing the first cell of MULy,) we
have obtained a systolic computation for encoding messages of varying lengths. Figure 2

shows a drawing of the process.
The communication behavior at the source side is (a*; ¢)*: the messages are separated
by signal ¢, and the value of M is immaterial to the source side transmissions.
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6. Palindrome Recognition

In this section we discuss a recursive palindrome recogngizer. The object is to spec-
ify a process with external behavior (b; a)*, where b is output and a is input, V(b) =
{true,false}, and V(a) = Z. The value of output & has to indicate whether the sequence
thus far received at input @ is a palindrome. More precisely, for ¢+ > 0

b(z) =(Vi:0<j<i:a(j) =a(t —1—7))
We have
b(0) = b(1) = true (6.0)
and for: > 0

bi+2)=(Vj:0<j<i+2:a(f) =a(i+1—7))
= (a(0) = a(7 + 1))
AVF:1<j<i+1l:a(f)=ali+1-7))
Aali +1) = a(0))
= (a(0) = a(i + 1))
AVFi0<j<ita(j+1)=a(i—17))

(6.1)

The latter conjunct is again the outcome of a palindrome recognizer, but now one that
pertains to the input sequence beginning at a{1). We, therefore, introduce a subprocess of
the same type as the process we are designing: for ¢ > 0

pali) = a(i +1) (6.2
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and
pb(7) = (Vi :0<j <i:pa(j)=pa(i—1-7))
Using (6.2), the latter relation may be written as
pb()=(Vi:0<5<ia(f+1) =a(i—J))
By (6.1) we then find for ¢ > 0
b(z + 2) = (a(0) = a(? + 1)) A p.b(35) (6.3)
Since the first two outputs at b are computed differently from the subsequent ones, we
suggest
b;a;b; (a; p.b; b; p.a)’ (6.4)

as the communication behavior. Then p.a(7) follows a(i + 1), cf. (6.2}, and b(i + 2) follows
a(¢ + 1) and p.b(?), as required by (6.3). By Theorem 3.3 alphabet {a,b} is transparent.
With S denoting the process specified by (6.4) we have

(S w p.S) {a,b} = SEM,(b,a)

This shows that the process has the required external behavior. It also has constant
response time. A sequence function is

o(a,i) =4%i+2
a(b,7) =441
o(p.a,i) =4%1+9
o(pb,i) =4%i+7
This is an allowed sequence function, since o + 7 is a sequence function for p and
o(p.a,i) =o(a,5) + 7
o(p.b,i) = o(b,d) + 7

Given (6.0), (6.2), and (6.3), it is not difficult to extend (6.4) with the computation of
the output values:

bltrue ; a?z ; bltrue

;(a?z ; pb?y b {(z=2)Ay) ; palz

(Notice that a? z establishes a(0) = 2.)

We have designed an infinite array of cells. With the sequence function given above,
subprocess p starts at moment o(p.b,0), i.e., at moment 7. In general, cell k, for &k > 0,
starts at moment 7 % k. Cell 0 produces the answers. For i > 0 answer b(z) is produced
at moment o(b,i) = 4 x 7. At that moment all cells k£ for which 7 * & < 4 # ¢ have started:
slightly over /2 cells are required to produce answer b{z).
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7. Conclusion

Systolic arrays are often presented and explained by means of pictures. We have
refrained from doing so. Of course, we showed a few pictures, but they were merely used
as illustrations: in no way did our discussion rely on them.

We discussed systolic computations in terms of their input/output behaviors. This is
a method for which the formalism of trace theory is very well-suited. We have isolated the
concepts of data independence, transparence, and conservatism as central notions in the
study of systolic computations. We are pleased with the nice way in which these concepts
tie together. In contrast to what is customary, we did not describe the computations in
terms of global states. As a matter of fact, we suspect that these solutions would not
have been found then: in [9] the palindrome recognizer requires cells that are slightly more
complicated (essentially, the combination of two of ours) to achieve that communication
takes place with the neighbor cells only.

One of the reasons why we want each cell to have a fixed number of neighbor cells is
to facilitate the realization of our computations as VLSI circuits. The main reason to have
all synchronization be accomplished by message passing is that we would like these VLSI
circuits to be delay-insensitive [10], which excludes the use of global clocks. The work
by Alain J. Martin on compiling CSP-like programs into delay-insensitive VLSI circuits
[6] shows that such realizations may be obtained by introducing handshaking protocols to
implement the communication actions.
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